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Vibrational distribution functions are derived for a number of rocksalt-structure alkali halides using a 
more refined treatment of the interionic forces than that provided by regarding them as rigid point charges. 
The dipole moment at any given ion site is calculated taking into account the contribution from the deforma
tion of the electron distribution resulting from both polarization and overlap repulsion between nearest 
neighbors. In this way the dipole-dipole part of the Coulomb interaction is treated self-consistently. 

Both room temperature and 0°K input parameters are used, and the derived specific-heat data are com
pared with experimental results. The over-all agreement with experiment is significantly better than that 
obtained by treating the ions as rigid point charges. 

Sets of phonon dispersion curves are also given. For Nal they are in much better agreement with those 
determined experimentally by inelastic neutron scattering than are the rigid ion curves. There appears to 
be close agreement with the results of the "shell-model" calculations. 

I. INTRODUCTION 

IN two classic papers on the lattice dynamics of 
NaCl, Kellermann1 made the first serious attempt 

to apply the formal Born-von Karm&n2 theory to a 
real crystal and, in particular, to the evaluation of the 
specific heat3 as a function of temperature. This work 
was stimulated by a series of papers due to Blackman.4 

These treated certain theoretical models exactly and 
demonstrated very clearly that, in these cases at least, 
the earlier simplified theory of Debye,5 which treated 
a crystal as an elastic continuum with a finite number 
of degrees of freedom, was inadequate. Blackman 
found that this failure can best be demonstrated, in 
any given case, by fitting a Debye function to the 
calculated specific heat at a sequence of temperatures 
T using the Debye characteristic temperature QD(T) 
as a disposable parameter. One thus derives QD(T) as 
a function of T, and any nonconstancy indicates a 
failure of the Debye theory. 

The &D(T) functions he obtained in this way for 
various three-dimensional models showed distinct 
minima in all cases. These occurred at temperatures 
low enough for the Debye specific heat to follow its 
limiting T3 law. Consequently, the true specific heat 
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1 E. W. Kellermann, Phil. Trans. Roy. Soc. London 238, 513 
(1940); Proc. Roy. Soc. (London) A178, 17 (1941). 

2 M. Born and T. von Karman, Physik. Z. 13, 297 (1912); 14, 
15 (1913). 

3 Here, and elsewhere, this quantity is defined as the specific 
heat at any temperature derived assuming the volume of the 
crystal to remain fixed at the value appropriate to some given 
temperature. This is usually chosen to be 0°K, but for 
Kellermann's results, room temperature. 

4 M . Blackman, Z. Physik 86, 421 (1933); Proc. Roy. Soc. 
(London) A138, 384 (1935); A159, 416 (1937). See also Reports on 
Progress in Physics (The Physical Society London, 1941, Vol. 8, 
p. 11); Handbuch der Physik, edited by S. Flligge (Springer-
Verlag, Berlin, 1955), Vol. 7, Part 1. 

6 P. Debye, Ann. Physik 39, 789 (1912). 

also displayed this behavior in the region of the mini
mum. This strongly suggested that a similar effect was 
responsible for the apparent close agreement between 
the Debye theory and the then-available specific-heat 
measurements for real crystals. Furthermore, the forms 
of the minima in Blackman's results were strongly 
influenced by the details of his models. 

I t was thus evident that more exact experimental 
work, particularly in the region of 0°K, was very 
necessary and that such work could well provide a 
detailed test of theoretical work on a real crystal using 
a specific force-constant model. Since the theory could 
only be tried in this way, there being no prospect of 
using specific-heat data to determine the interatomic 
forces directly (a statement that is still valid at present), 
NaCl was an obvious choice as a test case. 

For this crystal, and indeed for all the alkali halides, 
Born6 had evolved a very simple model which re
produced the observed cohesive energy extremely well. 
He found that each of these crystals could be regarded 
as an array of alternating point charges held apart by 
short-range repulsions acting only between nearest-
neighbor ions. A later refinement of this work by 
Born and Goeppert-Mayer7 which included non-
Coulomb interactions between more-distant neighbors 
seemed least necessary for NaCl. I t was, thus, the 
simplest crystal to treat theoretically. 

Kellermann's results1 confirmed the existence of a 
minimum in QD(T) and agreed reasonably well with 
experimental data, although direct comparison should 
strictly only be made when theory and experiment 
both refer to fixed volume at 0°K. 

6 M. Born, Atomtheorie des Festen Zustandes (J. B. Teubner, 
Berlin, 1923). 

7 M. Born and M. Goeppert-Mayer, in Handbuch der Physik, 
edited by S. Fliigge (Verlag Julius Springer, Berlin, 1933), Vol. 
24, Part 2. 
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Subsequently, Iona8 published a rather less detailed 
treatment of KG, but it was not until recently that 
any further incentive to undertake calculations as 
detailed as Kellermannn's was provided by experimental 
work. In 1957 Barron, Berg, and Morrison9 published 
an analysis of new specific-heat measurements on several 
alkali halides, made by Morrison and co-workers,10 

(cf. earlier work by Clusius, Goldman, and Perlick11), 
which extracted far more information than could have 
been derived from earlier data and offered a much more 
rigorous test of theoretical work. Subsequently, one of 
us (A.M.K.) published a systematic application of 
Kellermann's analysis, first to the Li and Na halides12 

and then to those K, Rb, and Cs halides13 which have 
the rocksalt structure. This work differed from 
Kellermann's in the use of the more recent crystal data 
published in Born and Huang,14 and results were 
derived for both room temperature (RT) and 0°K data. 
The second set were then directly comparable with 
the results of Barron, Berg, and Morrison.9 Agreement 
between theory and experiment was satisfactory for 
the K halides, but certain significant discrepancies 
were present in the cases of NaCl and Nal. The most 
likely origin of these was the oversimplified manner 
in which the Coulomb interactions were treated in the 
Born-Kellermann model. This view was confirmed 
when the second author (J.R.H.) derived a frequency 
spectrum for the NaCl crystal15 based on a self-
consistent analysis of the dipole-dipole interactions 
in a perturbed lattice. This spectrum had a very 
different shape from that resulting from the Kellermann 
theory. In a joint paper16 it was shown that the use of 
the new theory led to results in closer accord with 
experiment. This theory has also been applied to 
KC117 (we shall refer to this paper as I hereafter), 
and here too the results are, on balance, in better 
agreement with the empirical data. 

The object of the present paper is to report the 
results of a systematic application of the new theory 
to all the more important rocksalt-structure alkali 
halides. These results provide us with a considerably 
more extensive test of the theory since we have included 
all the crystals investigated by Barron, Berg, and 
Morrison.9 Our data also indicate other salts for which 

8 M. Iona, Jr., Phys. Rev. 60, 822 (1941). 
9 T. H. K. Barron, W. T. Berg, and J. A. Morrison, Proc. Roy. 

Soc. (London) A242, 478 (1957). 
10 W. T. Berg and J. A. Morrison, Proc. Roy. Soc. (London) 

A242, 467 (1957). See also J. A. Morrison, D. Patterson, and 
J. S. Dugdale, Can. J. Chem. 33, 375 (1955); J. A. Morrison and 
D. Patterson, Trans. Faraday Soc. 52, 764 (1956). 

11 K. Clusius, J. Goldmann, and A. Perlick, Z. Naturforsch. 4a, 
424 (1949). 

12 A. M. Karo, J. Chem. Phys. 31, 1489 (1959). 
13 A. M. Karo, J. Chem. Phys. 33, 7 (1960). 
14 M. Born and K. Huang, Dynamical Theory of Crystal Lattices 

(Oxford University Press, New York, 1954), pp. 26 and 54. See 
also R. W. G. Wyckoff, Crystal Structures (Interscience Publishers, 
Inc., New York, 1948), Vol. 1, Table III . 

15 J. R. Hardy, Phil. Mag. 4, 1278 (1959). 
16 J. R. Hardy and A. M. Karo, Phil. Mag. 5, 859 (1960). 
17 J. R. Hardy, Phil. Mag. 7, 315 (1962). 

differences from the results of the Kellermann theory 
are large and for which further experimental work 
would seem to be most fruitful. 

An important and independent stimulus to this type 
of theoretical work is provided by inelastic neutron 
scattering measurements. Recent work by Woods, 
Cochran, and Brockhouse18 on Nal resulted in the 
direct determination of frequency versus wave vector 
dispersion curves for plane-wave normal modes pro
pagating along (100), (110), and (111) directions in 
this crystal. The measured curves are very different 
from those derived using the Born-Kellermann model. 
Consequently, these authors have given a theoretical 
analysis in the same paper based on the "shell model,'' 
originally developed by Dick and Overhauser19 to 
explain dielectric properties, which leads to dispersion 
curves much closer to those they measured. 

It is evident that when empirical dispersion curves 
are known in this way they provide a quite independent 
test of a given theoretical model. Thus, in the case of 
Nal, if our model yields both dispersion curves and 
specific-heat data in agreement with experiment, it 
seems likely that it also provides a good description of 
the interionic forces. Conversely, should there be 
discrepancies for Nal or any other salt, one may 
hope by combining both sets of data to deduce what 
modifications of the model are necessary to remove 
them. 

It is particularly important to apply the present 
theory to Nal since our approach differs from that of 
the shell model and is free from the more artificial 
assumptions of the latter. It was possible that we 
would not have produced as good an agreement between 
theory and experiment as that found by Woods, 
Cochran, and Brockhouse.18 However, this appeared 
unlikely as our earlier results16 for NaCl are virtually 
identical with those published previously by Cochran.20 

In addition, it does seem quite likely that our theory 
can provide a clearer insight into the meaning of any 
residual discrepancies. At all events it is highly desirable 
to have more experimental dispersion curves, particu
larly for salts for which detailed specific-heat measure
ments are available. 

II. THEORY 

This has been given in detail in I, and we shall 
merely outline the basic ideas and quote those results 
relevant to the present work. 

For any molecular system one can write a 
Hamiltonian function governing the nuclear motion 
which involves only the coordinates XK and momenta 
PK of the nuclei (where K specifies a particular nucleus), 

18 A. D. B. Woods, W. Cochran, and B. N. Brockhouse, Phys. 
Rev. 119, 980 (1960). See also Bull. Am. Phys. Soc. 5, 462 (1960), 
Sec. 48. 

19 B. G. Dick, Jr., and A. W. Overhauser, Phys. Rev. 112, 90 
(1958). 

20 W. Cochran, Phil. Mag. 4, 1082 (1959). 
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provided the electrons follow the nuclear motion 
adiabatically. For alkali-halide crystals this approxi
mation is certainly valid, since their large band gaps 
ensure that electronic excitations have frequencies 
several orders of magnitude greater than the vibrating 
nuclei. Therefore, the nuclei behave as a closed system 
having an effective potential function $(XK). 

To the lowest order, assuming one measures XK from 
the equilibrium configuration where ^>(Xx)/^XJs:=0, 

$(X*)=$2=J £ M )XK, (1) 
KK' \dXKdXK</ 

Thus, the Hamiltonian H is given by 

H=H [ P2 "i 
(2) 

where MR is the mass of the nucleus K and the second 
term is simply an abbreviated form of <f>2, <P(KKf) being 
a 3 by 3 matrix. 

Our concern is with a large perfect rocksalt structure. 
We shall restrict the ensuing discussion to this system, 
which we shall treat assuming H% to provide an 
adequate Hamiltonian function. This approximation 
leads to harmonic nuclear vibrations. For alkali halides 
the theoretically derived specific heats are directly 
comparable with the corrected experimental data.9 

The latter are appropriate to an "effective" harmonic 
lattice at 0°K as a consequence of the high cohesive 
energies of these crystals which ensures that anharmonic 
effects are small at low temperatures. 

Theoretically, one considers a crystal containing L 
ion pairs, where L is Avogadro's number; the resultant 
specific heats are thus appropriate to one mole. To 
ensure full periodicity we assume that the crystal has 
the same shape as the basic face-centered monatomic 
primitive cell, each of which contains one ion pair, and 
impose the Born-von Karman2 boundary condition 
which constrains corresponding points on opposite faces 
to have the same displacements.21 I t is then possible 
to reduce Eq. (2) by a Fourier decomposition of the 
displacements X#=X(fcO> where / is the cell index and 
k is 1 or 2 according to whether K refers to a positive 
or a negative ion. Thus, 

1 Q( i ) 
X(*0=— E e^*l\ 

Z,1/2 q (w*)1/2 

where the wave vectors q satisfy the periodic boundary 
conditions, and t{hl) is the position vector of the ion 
(ikO in the undistorted lattice. Moreover, the lattice 
periodicity is such that there are exactly L physically 
distinct q vectors evenly distributed over the first 
Brillouin zone. 

Equation (2) now reduces to 

#2=![E 0*(*)0(*)+ E Q*(*)M(*v)Q(*0], (3) 
qfc qfcfc' 

where 
e-iq.[r(*D-r(*'0)] 

M(*V) = E •G1*'0)— —— 
i {mkmk')

m 

and where we have used the fact that &{klkfV) depends 
only on the relative cell index I—/'. 

For a general value of q no further reduction by 
symmetry is possible. However, Eq. (3) can be trans
formed to a sum of 6L harmonic oscillator Hamiltonians, 
one set of 6 for each q value, whose frequencies are the 
positive roots of the eigenvalues of the 6 by 6 matrix 
M = M ( * V ) . These oscillations are the 6L independent 
normal modes for one mole of crystal, within the 
harmonic approximation. 

Because the frequencies co(;
q) (j— 1, • • • ,6) are densely 

distributed over a range 0^o)(jq)^o)my & convenient 
and physically meaningful quantity is the distribution 
function A7(c*>), where N(o))dco is the number of allowed 
frequencies between co and co+do). Any sum over normal 
modes can then be represented by an integral over this 
frequency distribution. 

The form of M, and thus of N(a>), depends strongly 
on the model one uses. The derivation of M for our 
present model has been given in I. Here we shall only 
summarize the basic assumptions and the manner in 
which the various parameters are fixed from the 
appropriate input data. 

The short-range contribution to M is evaluated by 
Kellermann's method1,17 from the observed compres
sibility j8 and the equilibrium nearest-neighbor distance 
r0. We have not attempted to include short-range 
interactions between other than nearest-neighbor ions. 

The Coulomb part of M is derived by calculating 
the dipole-dipole interaction and neglecting higher 
order multipole effects which we believe to be much 
less important [see I, Appendix (a)]. Moreover, the 
dipole moment on a given ion is calculated in a way 
which allows not only for its displacement as a point 
charge, but also for the distortion induced in the 
electronic charge distribution. This is regarded as 
consisting of two parts: 

(a) A component Ui(fc*)=afcJ5eff, where ak is the 
appropriate crystal polarizability and is taken from the 
results of Tessman, Kahn, and Shockley (T.K.S.),22 

using the values extrapolated to zero frequency. 
(b) A component u^h1) which depends on the relative 

positions of the given ion and its nearest neighbors, 
and which we refer to as the deformation dipole (D.D.) 
moment, associated with the ionic overlap responsible 
for the nearest-neighbor repulsion. 

21 See reference 17, Appendix (b) for a discussion and Justifica
tion of the Born-von Karman periodic boundary condition. 

22 J. R. Tessman, A. H. Kahn, and W. Shockley, Phys. Rev. 
92, 890 (1953). 
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This second concept was first introduced by Szigeti23 

to account for the discrepancies between the observed 
static dielectric constants eo and those calculated 
assuming the ions to displace as point charges of 
magnitude T e , where e— | electronic charge |, and to 
acquire electronic dipole moments of the form Ui(kO« 
In this way he found that it was perfectly consistent 
to regard the ions as carrying an "effective charge'' 
Te*, where e*/ecz4).7 in most cases, when calculating 
eo, while using the full value of e when calculating the 
Madelung contribution to the cohesive energy. 

The reason for this is that electrons tend to be 
displaced from the regions of maximum overlap between 
nearest neighbors. Therefore, any given ion acquires a 
multipole moment which depends only on the relative 
configuration with respect to itself and its nearest 
neighbors. We are concerned with the resultant dipole 
moment, and this can be derived by regarding the 
charge distribution on a particular ion as equivalent 
to a monopole of ^Fe, at the nucleus, together with 
six similarly situated dipoles each of the form 
w* fc(|r»|)(r»/|r t-|). Here, i ( = l , - - - , 6 ) denotes a par
ticular nearest neighbor and ti is the position vector of 
this ion with respect to the central nucleus of type k. 

In the undistorted lattice the resultant dipole 
moment is zero, but in the uniformly polarized crystal 
this is no longer true. A dipole moment, linear in the 
relative displacement of the two sublattices, is present 
and is a function of both mk(rQ) and [dmk{r)/dr~]rfi. If 
one assumes that m2(r) is proportional to e~rlp, where p 
is the screening radius in the repulsive potential, and 
that ml(r)^=Q, then one may determine m2(r) and its 
derivative from the observed value of e*/e for any 
given crystal. This implies that the positive ions (&= 1) 
do not deform to any marked extent. This assumption 
seems reasonable for salts where ai<0*2 (e.g., for the 
Li and Na Halides), but it appears to hold even when 
this is not the case. In I it is shown that, for KC1, the 
assumption that ml(r)/tn2(r)<^ai/a2 produces results 
in very much worse agreement with experiment than 
those derived assuming tn1(r) = Q. Moreover, it was 
found that any departure from the latter restriction 
worsens the agreement. 

Therefore, throughout the present analysis we have 
set w1(r) = 0. Since this assumption is valid for KCl, 
it should also hold for all the salts considered in this 
paper, with the possible exception of K F for which 
a i > a 2 . 

Yamashita and Kurosawa24 in their treatment of the 
dielectric constants of ionic crystals and Tolpygo et al?h 

in their work on the normal modes of alkali halides 
have similarly considered the polarization of the ions 
arising from the electric field due to the displacements 

23 B. Szigeti, Proc. Roy. Soc. (London) A204, 51 (1950); see also 
reference 14 (Born and Huang), p. I l l for further discussion. 

24 J. Yamashita and T. Kurosawa, J. Phys. Soc. Japan 9, 944 
(1954); 10, 610 (1955). 

26 Z. A. Demidenko and K. B. Tolpygo, Soviet Phys.—Solid 
State 3, 2493 (1962). References are given to earlier papers. 

of the ions. They have also taken into account deforma
tion of the charge distribution resulting from overlap 
interaction. The results of the latter workers, although 
considerably less extensive than those reported here, 
are in essential agreement with both the shell model18 

and the present work. 

HI. CALCULATION 

Obviously one cannot derive the eigenvalues of M 
for all the allowed q vectors. We use the sample of 
1000, evenly spaced throughout the first Brillouin 
zone, selected by Kellermann together with the zone 
corners which he also included although they are not 
true members of the sample.26 

Our results are thus directly comparable with those 
obtained for rigid ions (A.M.K.).12'13 (in the earlier 
paper16 the corners were excluded, but the derived 
quantities are unaffected within the limits of significance 
of the calculation.) From the eigenfrequencies for this 
sample of points it is then possible to derive any 
function <j> of the form 

/•WW 

<*>=Z f\j*Ml= / fd*)N<s*)d» 
<u Jo 

by summing /(&>) over the sample of q vectors, each 
appropriately weighted. One obtains the specific heat 
Cv(T) by substituting for / the Einstein specific-heat 
function. From Cv(T) the effective Debye temperature 
QD(T) can be derived using Blackman's method4 

described in the introduction. 
Similarly, the nth. moment of the frequency distribu

tion function, 

wnN{o>)du / / N(p)du, 

is given by summing appropriately weighted values of 
(o)j)n over the sample of q vectors and dividing by the 
sum of the weighting factors. 

From the resultant values of \xn one can evaluate the 
moment function CJD(W) = [ | ( W + 3 ) j u J 1 / n , used by 
Barron, Berg, and Morrison9 as a means of correlating 
values of /Xn derived from experimental data. 

This function, which should be constant for a true 
Debye spectrum, provides a particularly useful means 
of comparing theory and experiment, since it contains 
most of the information which can reliably be derived 
from the sample of points we have employed. The 
curves of QD(T) VS T contain a little more but are 
unreliable in the regions close to 0°K. 

The eigenvalues and their associated eigenvectors, 
which also have been determined in each case for all 
the chosen q vectors, are too numerous to tabulate in 
this paper. However, they are available from one of us 
(A.M.K.) upon request. 

26 The sample point omitted by Kellermann (references 1, 12) 
q=ir/ro(0.7, 0.7, 0.1), and those derived from it by symmetry 
have been included. 
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IV. RESULTS 

A. Initial Calculations 

We have treated all of the Na and K halides together 
with LiF and LiCl. Results for each crystal have been 
obtained for both room temperature (RT) and 0°K 
input data.27 For the 0°K calculations we have assumed 
that e*/e, ah and a2 are unchanged between RT and 
0°K, except for KC1 for which a slightly modified 
value of the effective charge has been used. Because 
e*/e is unknown for all the lithium halides except LiF, 
the value used for LiCl is only a rough estimate. 
Compressibilities and lattice constants, which constitute 
the remainder of the input data, are the same as those 
used in the rigid-ion calculations.12,13 

Thus, most of the input data have been taken from 
Born and Huang28 and T.K.S.22 and are displayed in 
detail as Table I. 

At present any comparison of our results and those 
of the rigid ion (RI) calculations is best made between 
those derived from RT input data. Although the ionic 
polarizabilities probably change little between RT 
and 0°K, e*/e may well vary significantly in many 
cases. This point will be considered in more detail in a 
later section. It is sufficient for our present purposes 
to remark that our results are very sensitive to e*/e, 
which in turn depends on e0 which is only known to 
within a few percent even at room temperature.29 In 
addition, to obtain e*/e one also requires o>o, the 
reststrahlen frequency, which is also unknown at 0°K, 

ooo 

N(u>) 
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C J 3 2 

N { " 
i i « i i n t 
4 6 8 lO 12 14 

w x Id13 (sec"1) 
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IOOO 

2 3 4 5 
w x id3 (sec"1) 

(c) 

IOOOI 

2 3 4 
0) x lO13 (sec"*1) 

IOOO 

(b) 

IOOO 

SOO 

No F 

" T J X : H 
••J i i i i i nb*. 

4 5 6 7 

w x io13 (sec"1) 

(d) 

IOOOI 

2 3 
w x IO13 (sec"1) 

(e) (f) 

FIG. 1. Vibrational frequency distributions for the Li and Na halides (RT data). 

27 It is not practical to present here a complete set of results for each of the alkali halides we have studied. The reader is referred 
to the University of California Lawrence Radiation Laboratory Report UCRL-6893, (1962, unpublished) by the authors for a full 
presentation of the calculated data. 

28 Reference 14 (Born and Huang), pp. 85 and 112. 
29 The values given in Born and Huang, p. 85, and used by us disagree with the more recent data of S. Haussuhl [Z. Naturforsch. 

12a, 445 (1957)] by amounts of this order. 
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TABLE I. Input data for initial D. D. (deformation dipole) calculations. 

Salt 

LiF 
LiCl 

NaF 
NaCl 
NaBr 
Nal 

KF 
KCl 
KBr 
KI 

Compressibility 
0 (10~12/barye) 

RT 

1.54 
3.41 

2.11 
4.26 
5.03 
7.07 

3.30 
5.63 
6.70 
8.54 

0°K 

1.43 
3.20 

1.99 
3.98 
4.70 
6.45 

3.10 
5.26 
6.17 
7.75 

"Effective charge" 
e*/e 

RT 

0.80 
0.75 

0.93 
0.74 
0.69 
0.71 

1.00 
0.80 
0.76 
0.69 

0°K 

0.80 
0.75* 

0.93 
0.74 
0.69 
0.71 

1.00 
0.795b 

0.76 
0.69 

Lattice constant 
r0 (10~8 cm) 

RT 

2.0087 
2.5648 

2.3100 
2.8138 
2.9805 
3.231 

2.6650 
3.1390 
3.2930 
3.5260 

0°K 

2.0004 
2.5538 

2.2967 
2.7935 
2.9560 
3.1975 

2.6476 
3.1167 
3.2658 
3.4918 

Screening radius 
p (10-8 cm) 

RT 

0.2989 
0.3346 

0.2878 
0.3283 
0.3335 
0.3637 

0.3020 
0.3236 
0.3348 
0.3497 

0°K 

0.2858 
0.3218 

0.2786 
0.3163 
0.3194 
0.3462 

0.2917 
0.3114 
0.3192 
0.3305 

Ionic polarizabilities 
(RT & 0°K) 

a+(=ai) 

0.029 
0.029 

0.255 
0.255 
0.255 
0.255 

1.201 
1.201 
1.201 
1.201 

a_(=«2) 

0.759 
2.974 

0.759 
2.974 
4.130 
6.199 

0.759 
2.974 
4.130 
6.199 

a Estimated from ionic radii. 
b Derived from 80°K data. 

although the RT values measured by different workers 
are reasonably self-consistent.30 

We have first used our data to construct frequency 
distribution functions N(oi) for all the salts. This was 
done in each case by dividing the frequency range into 
about twenty equal intervals, Aa>, and counting the 
properly weighted number of frequencies in each. This 
allows one to plot a histogram of the distribution 
function iV(co) against w. In most cases it is then possible 
to fit a smooth curve to the histogram, which is a 

reasonable approximation to the true distribution 
function. Frequency distributions for both 0°K and 
RT initial sets of parameters (Table I) were con
structed, but except for the K halides the former are 
not displayed here. For 0°K parameters the structure 
of the curves in general is unchanged with only small 
shifts of the peaks to higher frequencies. 

In Figs. 1 and 2 the resulting RT N(cc) vs co curves 
are shown, together with the backing histograms. 
These curves have been checked, and in one or two 

FIG. 2. Vibrational frequency 
distributions for the K halides 
(RT data). 
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30 R. B. Barnes, Z. Physik 75, 723 (1932); G. O. Jones, D. H. Martin, P. A. Mawer, and C. H. Perry, Proc. Roy. Soc. (London) 
A261, 10 (1961); and M. Hass, Phys. Rev. 119, 633 (1960). 
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dubious cases modified, by displacing the origin of Aw curves for NaCl and KC1 are slightly modified versions 
by first Aw/3 and then 2Ao>/3 and recounting. As a of earlier results18'17 and are given here for completeness. 
result of this check one can say that all the features The use of a smaller Aw for KC1 has also revealed addi-
displayed by the smoothed curves are genuine, but tional structure on the low-frequency side of the 
that their relative strengths are somewhat uncertain, strongest peak. 
This is particularly true of the weaker features. The In Figs. 3, 4, and 5 the associated sets of w vs q 
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FIG. 3. Phonon-dispersion curves for 
LiF and LiCl (RT data). 
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FIG. 4. Phonon-dispersion curves for the Na halides (RT data). For NaCl see reference 16. 
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FIG. 5. Phonon-dispersion curves for the K halides (RT data). For KCi see reference 17. 
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FIG. 6. Debye characteristic temperatures as functions of 
temperature for the Li halides. Upper and lower curves are for 
0°K and RT parameters, respectively. Experimental values are 
indicated by the dashed curve. 

dispersion curves, marked D.D., are shown for lattice 
waves propagating along (111) and (100) directions in 
these crystals. For comparison the appropriate rigid-ion 
(RI) curves12,13 are also shown together with the 
measured RT reststrahlen frequency30 which provides 
a direct measure of the transverse optical (t.o.) fre
quency at q=0. Once again all the results are derived 
from RT data. The transverse branches (t.a. and t.o.) 
are doubly degenerate for these directions, hence there 
are only four distinct o>'s for a given q vector. The curves 
which one obtains from 0°K data differ very little in 
over-all shape from those given here. To illustrate the 
general trend we have shown both sets of curves for 
Nal together with the results derived by inelastic 
neutron scattering at 110°K.18 By comparing our 
results with those of Woods, Cochran, and Brockhouse 
it can be seen that the D.D. (0°K) curves fit the 
experimental results as well as do those of the "shell" 
model used by these authors. 

In Figs. 6, 7, and 8 are plotted the QD(T) curves 
which we obtain from the theoretical specific heats. 
Also shown are the experimental curves derived from 
values of Cv(T) for those salts for which data are 
available.10-11 Each curve is terminated near 0°K when 
it ceases to be reliable. Tables of the calculated and 
experimental heat capacities which correspond to these 

FIG. 7. Debye characteristic temperatures as functions of 
temperature for the Na halides. Upper and lower curves are for 
0°K and RT parameters, respectively. Experimental values are 
indicated by the dashed curves. 

FIG. 8. Debye characteristic temperatures as functions of 
temperature for the K halides. Upper and lower curves are for 
0°K and RT parameters, respectively. Experimental values are 
indicated by the dashed curves. 

Debye characteristic temperatures are collected in 
reference 27. 

In Figs. 9 and 10 we show in more detail the derived 
moment functions, O>DM, denoted by D.D. Also 
plotted are the curves obtained from the rigid-ion 
(RI) model12,13 and from the available experimental 

FIG. 9. The moment function 
» D ( » ) = [i(»+3)iun]1/n vs n for NaCl 
and Nal. The experimental curve for 
Nal has been modified and is appro
priate to eao=193°K rather than 
195°K (reference 9). 
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•^^6 1 t u n 
FIG. 10. The moment function «z>(») = [i(»+3)Mn]1/n vs n for KCl, KBr, and KI. 

data.9 The RT results for NaCl and KC1 have appeared 
previously16 (see also I). In the present paper, the 
curves have been extrapolated to the true limiting 
value of kBBo/h as »—> — 3; where kB is Boltzmann's 
constant and Go is the limiting value of BD(T) at 0°K 
evaluated from the theoretical elastic constants.9 For 
our model these limiting values are the same as those 
derived previously for rigid ions.12'13 

In Fig. 10 we have also shown for KBr and KI the 
o)D(n) curves obtained by neglecting the deformation 
polarization, which is equivalent to setting e*/e=l. 
(A similar curve is drawn in Fig. 13 for the KC1 calcu-
lation described in the next section.) We note that 
deformation polarization in KF has also been neglected 
because of our initial choice of the parameter e*/e 
(see Table I). It is evident that this neglect introduces 
a discrepancy between theory and experiment at least 
as marked as that found in the case of NaCl16 and 
completely destroys the accord between the RI results 
and experiment. 

B. Variations of Parameters 

We see that the results in any one case are sensitive 
to the input values of e*/e, the compressibility 0, and 
the lattice parameter fo. Changes in the first affect the 
shape of the resultant c*)D(n) curve very markedly; 
while variations in fi and r0, which are partially compen

sating, produce an almost uniform change in the 
absolute level of this function. 

It might also be expected that our results are sensitive 
to the ionic polarizabilities a*. To check this we have 
calculated frequency distributions for all the alkali 
halides considered with a i '=a i=0 and at^cti+az, the 
sum of the T.K.S.22 polarizabilities. The resulting 
distribution curves are shown in reference 27. Except 
in the case of KF (cf. Fig. 16), which we shall consider 
in more detail later, the distributions are not greatly 
affected. The derived QD(T) and WDM curves are so 
little different from those in Figs. 6 through 10 that, 
apart from the QD(T) curve for KF, we have not 
displayed them. In every case, KF excluded, the results 
are in slightly worse agreement with experiment in
dicating that one should retain the T.K.S. a's during 
subsequent work. 

We decided to take as our test cases the three salts 
KC1, NaCl, and KF, and we shall discuss each 
separately. 

1. KCl 

For this crystal we have used a revised value of ft in 
the 0°K calculation, since more recent results31 indicate 
that the value given in Table I is an underestimate. 
Revised input data for KCl and for the other two salts 
are listed in Table II. 
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FIG. 11. Superimposed vibrational frequency distributions for the K halides (0°K data) corresponding 
to including or neglecting deformation polarization. 

1 M. H. Norwood and C. V. Briscoe, Phys. Rev. 112, 45 (1958). 
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TABLE II . Variations of 0°K input data. (Parameters not shown 
explicitly are the same as those appropriate to 0°K in Table I.) 

Salt 

KC1 
NaCla 

b 
c 
d 
e 

KF a 
b 
c 

Compressibility 
0 (10~12/barye) 

5.08 

3.89 
3.89 
3.89 

"Effective 
charge" 

e*/e 

0.756 

0.756 
0.756 
0.95 
1.05 
0.85 

Screening radius 
(used to derive D. D. 

moment) 
p(10-8 cm) 

0.3028 

(original run) 
0.3107 
0.3107 
0.3729 [=1.2(0.3107)] 

It can be seen that we have used the same value of 
(e*/e)o°K as that given in Table I and that it is virtually 
the same as the RT value. The low-temperature value 
is obtained from recent measurements by Hass30'32 on 
the reststrahlen frequencies of NaCl and KC1 at 82°K 
which provide a much improved estimate of (e*/e)o°E;. 

In Fig. 11 we show the resultant distribution function 
for these input data together with the distribution 
function derived with e*/e= 1. For comparative pur
poses we also show those functions obtained for KBr 
and KI, superimposing the distributions corresponding 
to either including or neglecting deformation polariza
tion. Similar curves for KF are given in Fig. 16. 
Comparing Fig. 2 (RT distributions) with Figs. 11 
and 16 (0°K distributions) clearly shows the relatively 
small changes in shape which in general occur between 
room temperature and 0°K. On the other hand, the 
complete change in character of the distribution 
function when deformation polarization is neglected is 
quite apparent. We may also note that the effect 
appears to be enhanced for the larger, more deformable 
ions. 

Thus, in general, the drastic changes in shape which 
can occur are due mainly to setting e*/e equal to unity 

250 

cxptl. curves 

(variation d In Table H) 
N a d / 

KC! < 0 ) 

SO 150 2 0 0 

FIG. 12. Revised Debye characteristic temperatures as functions 
of temperature (0°K data). For NaCl only the best fit (variation d) 
is shown. Curves for the other variations are shown in Fig. 13. 

and not to the changes in 0 and fo between RT and 
0°K.33 

In Figs. 12 and 13 the derived functions &D(T) and 
o)D(n) are shown. Most of the discrepancy between 
theory and experiment, present in Figs. 8 and 10, has 
been removed, the agreement being at least as good as 
that for KBr and KI. 

2. NaCl 

For this salt the data of Hass30 indicate an appreciable 
change in (e*/e)o°K> We have tried a number of varia
tions of the input parameters, all of which are listed in 
Table II. The resulting Debye temperatures and 
moment functions are shown in Figs. 12 and 13. In 
Fig. 14 we show the distribution function which 
combines the most reliable input data and leads to the 
best fit of the specific-heat data. 

Thus, from Fig. 13 we see that the use of the improved 
value of e*/e worsens the agreement with experiment, 

FIG. 13. The moment function 
wz)(n) = [i(»-f3)/i»]1/n vs n for vari
ous 0°K input data. 

We should like to express our thanks to Dr. Hass for access to unpublished data on these salts. 
The relative effect is significantly larger for the D.D. results than for the R. I. curves although small in absolute terms. 
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FIG. 14. Revised vibrational frequency distribution for NaCl 
resulting from the most reliable set of input data. 

but that the use in addition of a more recent value34 of 
0 removes this discrepancy and leads to better over-all 
agreement than any other set of parameters. 

It is particularly interesting to notice that the use of 
a different value of p, the screening radius, when 
deriving m2(r) worsens the agreement between theory 
and experiment. This indirectly supports the assump
tion that deformation due to overlap occurs only on 
the negative ion. If the displaced charge came from 
both types of ion, its "center of gravity" would prob
ably move, relative to the nucleus of the negative ion, 
in a uniformly polarized crystal (as predicted by the 
"shell model"19), and this would effectively increase p. 
Such an effect need not occur if only one type of ion 
deforms. 

3. KF 

As mentioned earlier this salt is unique among those 
considered here in that the positive ion has the larger 
polarizability. This suggests that, if deformation 
polarization occurs, it may also take place on the posi
tive ion. In the initial calculation we set e*/e— 1 and 
thus neglected any deformation polarization. The 
resulting poor agreement between the theoretical and 
experimental35 OD(T) curves indicates that this assump
tion is invalid. Also, as we noted in Sec. IV B, it is 
disturbing to observe the relatively large improvement 
in this agreement brought about by assuming all the 
polarization dipole to lie at the center of the negative ion. 

We have therefore repeated the calculations for 
£*/e=0.85, 0.95, and 1.05 (see Table II). The last 
value is used in a calculation in which only the positive 
ion is allowed to deform. 

The Debye characteristic temperature is shown in 
Fig. 12 and the associated sets of dispersion curves 
and frequency distributions in Figs. 15 and 16. In 
every case we have confined our attention to the 
results derived from 0°K input data. It is evident 
from Fig. 12 that assuming e*/e=§&$ gives a theoretical 
GD(T) curve in excellent agreement with the experi
mental curve. The slight discrepancy above 150°K 
may well represent a systematic error in the derivation 
of OD(T) from the measured specific heat at constant 
pressure.35 While subsequent measurements may in
dicate some slight revision of e*/e to be required, it is 
almost certain that the value of 0.85 is not greatly in 
error. 

Thus, we may say conclusively that the deformation 
occurs essentially on the negative ion in this as in the 
other salts. Moreover, for e*/e=0.85 the results ob
tained assuming that only the negative ion polarizes 
are now in significantly worse agreement with experi
ment. Perhaps the most striking confirmation of the 
revised value of e*/e for KF comes from the observed 
reststrahlen frequency at 80°K for this salt.36 This is 
shown on the dispersion curves in Fig. 15 (assuming 
the value unchanged at 0°K). It is seen that this 
point lies on the calculated transverse optical (t.o.) 
branch at q=0. Such good agreement does not follow 
implicitly from that found between the theoretical and 
experimental specific-heat data. It may be taken, 
therefore, as an independent piece of evidence in 
support of our final model for which the frequency 
distribution is shown in Fig. 16. In Fig. 16 a com
parison is given of this distribution and those cor
responding to neglecting deformation polarization or 
placing all ionic polarization on the negative ion. 

Finally we note that it would be particularly 
interesting to determine experimentally the value of 
wOT=on.0.(q=0) (the highest frequency) for this salt to 
provide a further test of this model. 

KF(OaK) 

FIG. 15 Phonon-dispersion 
~"j curves for KF for various 

0°K input data. 

34 W. C. Overton and R. T. Swim, Phys. Rev. 84, 758 (1951) 
35 E. F. Westrum and K. S. Pitzer, J. Am. Chem. Soc. 71, 1940 

(1949). 0D(T) is derived from Cv(T) estimated as described in 
reference 13, footnote 13. 

V. DISCUSSION 

It is evident that our theory leads to results which 
are in general in reasonable agreement with the experi
mental data that exist. It should be emphasized that 
the input values of /3 and e*/e are subject to experi
mental revision. Any discrepancies with respect to 
present results of the theory revealed by subsequent 
experimental work could well be reduced by improved 
values of these parameters (cf the revisions for KC1 

36 Molecular and Solid State Spectroscopy Report 1959-1960, 
Physics Department, King's College, London, U. S. Army 
Contract DA-91-591-EUC-1308 OI-4201-60 (unpublished). We 
are particularly indebted to Dr. G. R. Wilkinson and C. Smart 
for access to their data in this report which also confirms results 
reported in reference 30, 
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FIG. 16. Superimposed vibrational frequency distributions 
for KF for various 0°K input data. 

and NaCl). This possibility applies to some extent to 
the significantly worse agreement between the present 
D.D. o)n(n) curves and the experimental curves, as 
compared with the RI results for KBr and KI . 

However, at least for KBr other reasons for the 
present discrepancy exist. This is apparent in Fig. 5 
where one can see that wt.o.(q=0) disagrees with the 
measured RT value. I t is probable that a similar 
discrepancy exists at 0°K. Since the calculated 
reststrahlen value is too low, one also expects the 
calculated values of O>D(W) to lie below the experimental 
results. This is seen to be the case. 

I t also seems likely that a similar, but smaller, 
discrepancy is present in the 0°K results for KI,31 and 
in the revised 0°K data for KC1. For the latter salt 
this could explain much of the residual disagreement 
between the theory and experiment. 

The probable origin of these discrepancies was first 
described by Szigeti.37 Prior to introducing the 
" deformation dipole" concept to explain the observed 
values of e*/e, he considered the effect of short-range 
interactions between second-neighbor ions. When these 
are present one must calculate both nearest and next 
nearest neighbor force constants separately. While 
both influence /?, cut.o.(q=0) depends only on the 
former. We hope shortly to present the results of more 
refined calculations designed to include both types of 
interaction. 

With this reservation, it is evident that the D.D. 
model reproduces the frequency spectra and the derived 
quantities determined experimentally from specific heat 
data rather better (particularly for NaCl and Nal) 
than the RI theory. This improvement is particularly 
satisfying when one recalls how sensitive the results 
are to the manner in which the dipole induced on a 
given ion is calculated. 

I t thus seems that future experimental work designed 
37 B. Szigeti, Trans. Faraday Soc. (London) 45, 155 (1949). 

to test the D.D. model would be very profitable. This 
is particularly true of neutron scattering measurements 
to determine dispersion curves, but also applies to 
experimental determinations of 0 and e*/e to establish 
accurately the values that one should use as input data. 
I t perhaps should be emphasized here that our model 
does not contain any adjustable parameters: The re
sults of the calculations are uniquely defined with 
respect to the input parameters, which in turn can 
eventually be precisely determined by experiment. 

The only safe comparisons would appear to be those 
made between our theoretical results and the cor
responding experimental data for an "effective" 
harmonic spectrum at 0°K.9 Provided that anharmonic 
effects are small in this temperature region, as is 
generally the case, it seems to us reasonable to assume 
that by using the observed values of e*/e and 0 at 0°K 
we obtain results which are appropriate to this spec
trum. That is, the most important anharmonic effects 
are probably implicitly included by using these input 
data.38 

I t seems likely that the use of more precisely deter
mined experimental parameters and the introduction 
of next-nearest-neighbor interactions between ions will 
remove most discrepancies except those in the COD(W) 
curves for some salts (e.g., NaCl) as n—> — 3. These 
differences reflect disagreements between theoretical 
and ultrasonically determined elastic constants,12,13,31,34 

and, in particular, the failure of the latter to satisfy 
the Cauchy relation Cn=Cu. Alternative measure
ments of C12 seem desirable in order to confirm and 
determine the exact extent of this violation, since Cn 
determined ultrasonically is somewhat unreliable. Such 
an alternative method is provided by direct measure
ments of j8, which one requires in any case to establish 
the input data reliably. (The "improved" values of /3 
for KC1 and NaCl were determined from the experi
mental values of Cn and Ci2,

31,34 and are thus still to be 
considered somewhat unreliable.) 

However, for LiF 39 the failure of the Cauchy relation 
is undoubtedly real and is reflected in the specific-heat 
data below 100°K. To properly interpret this dis
crepancy a more refined theory along the lines developed 
by Lowdin40 and his school is probably necessary. 

These workers have made detailed quantum-me
chanical calculations of the charge distributions in 
several alkali halides using free-ion functions. The 
derived potential function for the nuclear motion in
volves terms which depend simultaneously on the 
coordinates of three or more ions. These terms can lead 
to violations of the Cauchy relation. However, in I 

38 B. Szigeti, Proc. Roy. Soc. (London) A252, 217 (1959); A258, 
337(1960). 

39 C. V. Briscoe and D. F. Squire, Phys. Rev. 106, 1175 (1957). 
40 P. O. Lowdin, Advances in Physics, edited by N. F. Mott 

(Taylor and Francis Ltd., London, 1956), Vol. 5. See also S. O. 
Lundqvist, Arkiv Fysik 9, 435 (1955); 12, 263 (1957). 
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[Appendix (a)] it has been demonstrated that these 
terms are essentially equivalent to the inclusion of 
higher order multipole interactions, and that it is 
plausible to infer that their influence is most marked 
for the long-wavelength acoustic modes, whose fre
quencies depend only on the elastic constants. It follows 
that both frequency distributions and dispersion curves 
should be almost unaffected, except in the low-frequency 
regions, and it would be interesting to test these 
assertions experimentally. 

I. INTRODUCTION 

WITH the advent of methods for generating and 
detecting ultrasonic waves at microwave fre

quencies, it has become possible to study the interaction 
between lattice vibrations and electron spin systems 
directly. Such studies have been carried out by ob
serving the effects of ultrasonic waves on paramagnetic 
resonance1,2 and, conversely, by noting the effects of 
paramagnetic ions on the propagation of ultrasonic 
waves.3"6 It is the purpose of this paper to discuss the 
latter phenomenon, and, in particular, to develop a 
theory of elastic wave propagation in a solid containing 
resonant spins. 

II. DISPERSION OF SOUND BY RESONANT 
SPIN SYSTEMS 

The experimentally observed change in the velocity 
of sound propagation6 when the ultrasonic frequency 

* Present address: Department of Physics and Astronomy, 
University of Rochester, Rochester, New York. 

1 E. H. Jacobsen, N. S. Shiren, and E. B. Tucker, Phys. Rev. 
Letters 3, 81 (1959). 

2 N . S. Shiren and E. B. Tucker, Phys. Rev. Letters 6, 105 
(1961). 

3 E. B. Tucker, Phys. Rev. Letters 6, 183 (1961). 
4 N . S. Shiren, Phys. Rev. Letters 6, 168 (1961). 
5 E. B. Tucker, Phys. Rev. Letters 6, 547 (1961). 
6 N. S. Shiren, Phys. Rev. 128, 2103 (1962). 
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approaches the resonant frequency of allowed spin 
transitions closely parallels the behavior of electro
magnetic waves propagating in a medium containing 
resonant atoms. The latter phenomenon of electro
magnetic dispersion is well known and easily described 
by MaxwelFs equations for the electromagnetic field 
and the dynamical equations for the atomic system. 
When the atomic system is represented by a harmonic 
oscillator, the problem is particularly simple and readily 
formulated in terms of Maxwell's equations and 
Newton's equations of motion for the oscillator, these 
same ideas being extendable to purely quantum-me
chanical systems by means of time-dependent per
turbation theory. To treat the dispersion of sound, we 
employ a model analogous to that of the harmonic 
oscillator used in elementary treatments of electro
magnetic dispersion and derive a set of equations of 
motion for the composite sound field and spin system, 
a simultaneous solution of which yields a dispersion 
relation. We expect the scheme to be extendable to spin 
systems obeying purely quantum laws of motion by 
the use of quantum theory. As we shall see, such a 
program can be carried out subject to the assumption 
that the spins are uniformly distributed and that there 
are many spins per sonic wavelength. The system of 
spin 5 = 1/2 is the counterpart of the harmonic oscillator 
in the optical case. 
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We discuss the interaction between paramagnetic atoms and elastic waves at microwave frequencies by 
means of a total Hamiltonian comprising sound field, interaction, and spins. From this Hamiltonian and 
the Heisenberg commutation rules we obtain a set of coupled equations of motion. The condition of com-
patability leads in the usual way to a secular determinant, the solution of which is a dispersion relation 
exhibiting the familiar anomalous change in velocity and absorption of waves near resonance. 


